
DSRd : A proposal for a low-latency, distributed
working memory for CORTEX

Pablo Bustos1, J.C. Garćıa,1, R. Cintas1,
E. Martirena1, P. Bachiller1, P. Núñez, and A. Bandera2

1 Robotics and Artificial Vision Laboratory, University of Extremadura, Spain
2 ISIS, School of Telecommunication Engineer, University of Málaga

Abstract. Robotics Cognitive Architectures (RCA) are becoming a key
element in the design of robots that need to be aware of its surrounding
space and of their role in it. This is especially important for robots that
interact with people in household, eldercare or industrial collaborative
scenarios. We have proposed in earlier works an RCA called CORTEX
designed for social robots operating in HRI environments. One of COR-
TEX’s main elements is a working memory designed as a graph-like data
structure that is accessed by all the computational modules in charge
of some relevant function in the system. Our current implementation is
based on the concept of a real-time database, where one of the mod-
ules stores, receives and publishes changes to all modules. In this pa-
per, we propose a new design of this element based on the Conflict-free
Distributed Replicated Data Types (CRDT) theory of distributed data
types. The new working memory presents important advantages over
existing designs that are demonstrated with several experiments.

Keywords: social robotics, cognitive architectures, CRDT, working mem-
ory

1 Introduction

Cognitive robotics is concerned with endowing robots with the capacity to plan
solutions for complex goals and to enact those plans while being reactive to
unexpected changes in their environment. To pursue this goal, cognitive archi-
tectures for robotics attempt to provide a reasonable structure where all the
functionalities of a working cognitive robot can be fit. If the final goal is to
endow these architectures within future service robots, the new design should
provide an adequate response to the demanding requirements imposed by the
human-robot interaction scenario.

Despite the large efforts for making cognitive and social robots a potential
counterpart of human users, it is currently not easy to find successful stories,
neither in the industrial segment, nor in the academic world. In the exhaus-
tive review by Kotseruba et al. [1], they assert that only some architectures
implement multiple skills for complex scenarios. One of the cited architectures
is CORTEX [2] [3], a proposal emerged from previous National and European



2 Bustos et al.

Fig. 1. The illustration shows a possible instance of the CORTEX architecture. The
central part of the ring contains the DSR graph that is shared by all agents, from whom
a reference implementation is presented here. Coloured boxes represent agents provid-
ing different functionalities to the whole. The purple box is an agent that can connect
to the real robot or to a realistic simulation of it, providing the basic infrastructure to
explore prediction and anticipation capabilities.

projects granted to our consortium. CORTEX is a long term effort to build a
series of architectural designs around the simple idea of a group of agents that
share a distributed, dynamic representation acting as a working memory. This
data structure is called Deep State Representation (DSR) due to the hybrid
nature of the managed elements, geometric and symbolic, and concrete (laser
data) and abstract (logical predicates) [4]). Figure 1 shows the main elements of
CORTEX in its current state.

The CORTEX architecture exposes four important dimensions of the RCA
design space: the trade-off between decoupling and sharing; the trade-off be-
tween top-down/bottom-down control; the functional content of the agents; and
the granularity of the functional decomposition. Decoupling is the main engi-
neering asset to tackle complexity. Accordingly, agents are defined as software
encapsulated groups of components that provide some specific, limited function-
ality3. In this sense, encapsulation provides decoupling but isolates each agent

3 The term agent is used here as a synonym of module and, as such, no specific features
such as goal-seeking or autonomy are imposed.



Low-latency working memory 3

from the valuable contextual information created by the others. To combine their
functionalities and show some degree of intelligence, agents must be able to share
information4. Each of them must know something about the others, otherwise
their goals will remain local, and complex sequential tasks will be outside the
reach of their individual abilities. The second dimension mentioned above is the
top-down/bottom-up control trade off, by which the system has to allow for the
existence of simultaneous and opposite streams of control. Top-down control in
CORTEX is generated by, at least, one deliberative agent with the capacity to
reason about high level tasks and compute efficient plans to drive the behavior
of the robot. Bottom-up reactions to unforeseen situations are locally handled
by agents while trying to fulfil plan steps. It should be noted that the planning
agent must react itself if the execution of the plan fails. Finally, these reactions
might trigger a cascade of changes in other agents through the shared memory,
giving raise to large behaviour modifications. The third design axis deals with
how the functional space, that is to be managed by the RCA, is partitioned in
local domains. In CORTEX, this is the problem of defining the role of each agent
in the overall problem space. Finally, the fourth dimension raises the issue of how
large the functional domain of these agents can be in order to fulfill two require-
ments: being simple enough to facilitate the design of complex architectures; and
being computationally realizable in terms of CPU usage, communication delays
and software maintainability.

Since the conception of CORTEX, different design choices have been stud-
ied to integrate these features. As briefly noted below and further described
in the references, several implementations of the CORTEX architecture have
been deployed in different types of robots working in real world scenarios during
these last years. All these use cases have a deep human-robot interaction com-
ponent and include situations such as attracting potential consumers to a stand
in public spaces [2], conducting geriatric tests to elderly people [6], conducting
physical therapies with children [7], searching and bringing objects to humans
or as a companion to the householder of an adapted apartment [8], or human-
aware navigation in different types of environments with people and objects [9].
The implementations of these experimental setups have grown to a considerable
software complexity, reaching up to 45 interconnected components.

On such large configurations, where all agents contribute from their func-
tional domains to a common working memory, the access to data can emerge as
a relevant bottleneck. The solution presented in this work is based on two key
technologies that have the potential to reduce bandwidth consumption by the
set of agents and maintain local immediate responsiveness to operation on the
graph. The first one is a high-performance pub/sub middleware5 implementing
RTPS (Real-time Publish-Subscribe Protocol) and configured to use UDP re-
liable multicast. The data sent by an agent is broadcasted to all the others at

4 We do not claim here that a shared representation is the only way to share informa-
tion among agents. The dynamicist approach is a well-known alternative [5].

5 https://www.eprosima.com/index.php/resources-all/performance/40-eprosima-
fast-rtps-performance



4 Bustos et al.

once, minimizing the required bandwidth compared to point-to-point connec-
tions. The second one is a theoretical development named Conflict-free Repli-
cated Data Types (CRDT) that provides data structures that can be safely and
asynchronously edited by a distributed set of processes without a central server.
By combining both technologies we have been able to create a new, highly effi-
cient, distributed graph (the DSRd). Contrary to our previous design, each local
DSRd copy can be now asynchronously edited by all the agents. Their changes
are sent as incremental state modifications through the network using minimal
resources and, when these updates are received, the local graph in each agent
is updated concurrently with the user’s operation, using a thread-safe interface
to the graph. This new server-less version will only exist as the set copies main-
tained by the agents, that will eventually converge to the same final state after
all editing is stopped. To our knowledge there are no other published CRDT
graphs with the functionality required here.

The rest of the paper is organised as follows: Sections 2 and 3 describe the
internal structure of the graphical representation of the DSR and the relevance
of the eventual consistency in our context. The implementation of the CRDT
graph is presented in Section 4, where we also provide preliminary experimental
validation. Finally, conclusions and future work are drawn in Section 7.

2 The Deep State Representation

Conceptually, the DSR represents a network of entities and relations among
them. Relations can be unary or binary predicates, while the entities may have
complex numeric properties such as pose transformation matrices that represent
the kinematic relations of objects in the world and the robot’s parts. Mathemat-
ically, the DSR is internalized as a directed graph with attributed edges. As a
hybrid representation that stores information at both geometric and symbolic
levels, the nodes of the DSR store concepts that can be symbolic, geometric or
a combination of both. Metric concepts describe numeric quantities of objects
in the world, which can be structures such as a three-dimensional mesh, scalars
such as the mass of a link, or lists such as revision dates. Edges represent rela-
tionships between nodes. Two nodes may have several kinds of relationships but
only one of them can be geometric. The geometric relationship is expressed with
a fixed label called RT . This label stores the transformation matrix (expressed
as a rotation-translation) between them.

The DSR can be described as the union of two quivers: one associated with
the symbolic part of the representation, Γs = (Vs, Es, ss, rs), and the other
related to the geometric part, Γg = (Vg, Eg, sg, rg). A quiver is a quadruple,
consisting of a set V of nodes, a set E of edges, and two maps s, r : E → V .
These maps associate each edge e ∈ E with its starting node u = s(e) and
ending node v = r(e). Sometimes we denote an edge by e = uv : u → v with
u = s(e) and v = r(e). Within the DSR, both quivers are finite, as both sets of
nodes and edges are finite sets. A path of length m is a finite sequence {e1, ...em}



Low-latency working memory 5

Fig. 2. Unified representation as a multi-labelled directed graph. For instance, the edge
labelled as connected denotes a logic predicate between nodes and it belongs to Γs. On
the other hand, the edge starting at the Occupational therapy room and ending at the chair

is geometric and encodes a rigid transformation (RT ′ and RT respectively) between
them. Geometric transformations can be chained or inverted to compute changes in
coordinate systems.

of edges such that r(ek) = s(ek+1) for k = 1...m− 1. A path of length m ≥ 1 is
called a cycle if s(e1) and r(em) are identical.

This embedding of geometric and symbolic structures within the graph is
exploited in the implementation described below through specific access APIs,
that provide specialized methods to compute long-range kinematic transforma-
tion among distant nodes, in the first case, and PDDL conversion or some forms
of reasoning, in the second.

3 Eventual consistency and CRDTs

One problem with the standard server-oriented design that is currently being
used in CORTEX is that an increase in the graph’s size or in the data density
will quickly increase latency and reduce throughput across the communication
network. Once latency is too high, the context provided by the DSR becomes
very difficult to use, since events in the world will happen faster than the reaction
time required to compute a response. In the worst case, an agent could be always
working on its local copy but being unable to publish its result. To address this
problem we need to find a solution that provides both a minimum band-width
use and a minimum amount of data exchanges among agents. Both requirements
must hold while a certain level of coherence among the local copies is guaranteed.

This work proposes a new implementation of the DSR that is fully dis-
tributed, provides very low-latency and a high and sustainable throughput. Ad-
ditionally, this new design scales up nicely in the number of agents, in the size of
data objects (i.e., raw sensor data from a camera or a LIDAR) injected at high



6 Bustos et al.

rates and in the number of nodes (objects) and edges (relationships or predi-
cates). The advantages of this high-performance working memory in CORTEX
are plenty: i) agents could be designed with a finer grain while maintaining full
access to graph; ii) the designer could exploit this feature to think of smaller
functional elements, which implies simpler software components that still can
communicate through this shared medium; iii) the graph could contain a wider
range of abstract nodes, going from raw laser data to complex predicates that
represent human intentional states; and iv) the participating agents will be able
to inject, delete or modify nodes and edges as the result of local decisions ex-
tended with the global graph data. We aim at latencies below 50 ms for a wide
range of configurations and payloads. With this value and assuming that most
real-world interaction loops, at a mid-abstraction level, run at 10 Hz, the agents
will view the internal representation is always updated.

It is well-known that low-latency or high-availability in a distributed network
of partitioned nodes is subject to the CAP theorem [10]. One cannot have both
low-latency and consistency (i.e., having an up-to-date copy of the data) at the
same time if the data is stored in several nodes that can loose or degrade their
connection at any time. Consistency requires synchronous updating of the state.
If one wants consistency, it may happen that after receiving a write operation
two nodes cannot communicate, their updates cannot be synchronously trans-
mitted to the rest and a blockage will occur, thereby forfeiting low-latency. If
one chooses low-latency, you need to allow that at least one node updates its
state to provide a quick response, making the other nodes inconsistent and thus
forfeiting consistency. It should be noted that even if all agents run on the same
board or in boards connected by a network switch, they are partitioned nodes
that can enter or leave the group at any time, and each one could have their
own group of clients -e.g local threads- requesting information.

In this proposal we choose low-latency and give up strong consistency in
favour of a form of weak consistency named eventual consistency [11] [12]. Un-
der this form of consistency, changes made to one copy of the shared object
are asynchronously propagated to the rest, but if all update activity stops, af-
ter a period of time all replicas of the data object will converge to the same
state. This means that at some point in the future, all data in the nodes become
indistinguishable from one another. In general, to ensure convergence, nodes
must exchange information with another about what writes they have seen.
While strong consistency requires synchronous updates to keep the semantics
of a single-system image (SSI), eventual consistency uses asynchronous updates.
When one node receives an update, it is executed locally, without synchroniza-
tion. Then, it is sent to other nodes. All updates eventually reach all nodes,
asynchronously and possibly in different orders.

CRDTs are distributed data types that are always available and eventually
converge when all operations are processed at all nodes [13]. CRDTs come in
two flavors: operation-based and state-based. In operation-based designs a repre-
sentation of the local operation is created in the local node and shipped then to
all other nodes. Once received, the representation of the operation is applied to



Low-latency working memory 7

the local copies of the receiving nodes. Alternatively, in a state-based design an
operation is applied only on the local node’s copy. Periodically, the node propa-
gates its local changes to other nodes through shipping its entire copy. The other
nodes incorporate the received copy with their local one via a merge function
that deterministically reconciles both copies6. Although operation-based CRDTs
allow for simple implementations and require smaller band-width, they require
exactly-once causal broadcast and a new operation has to be defined for each
kind of modification to the graph. State-based systems do not have this limita-
tion but they may incur in high communication overheads when shipping large
size local copies. Recently, a new improvement on state-based systems has been
proposed that mitigates this problem. Delta-state RDT are based on propagating
only a representation of the effect of the update operation on the copy [14] [15].
Instead of shipping the complete copy, this new design allows the nodes to send
only δ-states (i.e incremental changes) of their copies.

4 Design and Implementation

The design of the distributed graph (DSRd) is organized in three loosely coupled
layers, as shown in Figure 3. The deepest one contains the RTPS logic, as pro-
vided by eProsima in its FastDDS open source library. The next layer contains
the CRDT logic, based on the C++ code kindly provided by C. Baquero 7. We
have used a CRDT implementation of a map data type as the core structure to
wrap inside a graph with the characteristics described in Section 2. The third
layer is the one exposed to the users of the tool and holds a view of the graph ac-
cessible through a thread-safe API and specialized sub-APIs. This design allows
the replacement of each layer in case a better technology becomes available.

One of the main goals in the creation of this tool has been is to simplify
robotics code development when the system is composed of many distributed
components. There are several features that we believe are mandatory to achieve
this goal:

1. A very simple deployment procedure with a minimum set of configuration
parameters. To start an instance of CORTEX, the user only needs to get the
robot or the simulator ready and run first a special agent named idserver.
This agent provides a unique identifier creation service required by all agents
to add new nodes to the graph, being this one of the requirements of the
underlying theory. When idserver starts, it can read a previously stored
graph on disk, as a JSON file. At this point, any other entering agent can
ask for an updated copy of the graph, using a topic reserved for this purpose.
Once it gets the copy it can safely start its operation.

2. Automatic code generation of all parts non dependant on the user code. All
these new agents are still software components created within the Robo-
Comp development framework [16]. Thus, all generic code for these agents

6 Convergence is guaranteed by defining merge as a least-upper bound over a join-
semilattice.

7 https://github.com/CBaquero/delta-enabled-crdts



8 Bustos et al.

Fig. 3. Layered design of the working memory. From bottom-up, each layer is conceived
to be replaceable and provides additional functionality to the system.

is automatically generated from a very simple DSL specification where only
the name is mandatory. Since no topics, ports, interfaces or IPs are needed
any more, a coder knowing the framework can create and start a new agent
connected to an existing CORTEX instance in less than thirty seconds.

3. A simple, intuitive and thread-safe user-level API to access the graph. Con-
currency originated between the user access to the graph and the merge oper-
ations triggered by incoming data from other agents, or by the user accessing
the graph from several threads, is handled by the core methods using the
new std::shared mutex primitive and the associated std::shared mutex

operation provided in C++17. To access a node, the user requests a copy
of it and the operation is protected with a read only "shared lock" oper-
ation, that allows read access to several concurrent threads. When the user
finishes editing the node, it is copied back to the graph using, this time,
a "unique lock", that waits until all reading threads finish. Inserting new
nodes or edges is not problematic and deleting nodes removes also all incom-
ing and outgoing edges using the "unique lock" mechanism.

4. A dictionary of node and edge types, and of all possible names and types of
both, node and edge attributes. One common source of errors when building
sets of components that share a structured representation like a graph is
the misnaming of nodes, edges and attributes among coders. This situations
usually take a long time to debug. The goal with DSRd is to completely
eliminate the source of these errors. The current solution uses a common
repository of types and names that all the team must use. However, we are
working in a more radical solution using the new constexpr functionality
provided in C++17 to keep in an include file all names and types of nodes,
edges and attributes. This will result in compile-time errors when the user
attempts to create or edit an element using the wrong name or data type.



Low-latency working memory 9

5. A graphical and textual display of the current state of the graph integrated
in each agent. Integrated in the generated code, each agent can optionally
include a graphical interface, implemented with Qt5, that provides several,
selectable, simultaneous, real-time views of the graph. These representations
are interactive allowing the inspection of graph elements, and are intended
as a powerful high-level debugging tool. Four views are provided: a standard
planar drawing of the graph; a 2D representation of the geometric nodes
embedded in the graph using Qt 2D drawing framework; a 3D view of the
same content using OpenSceneGraph8; and a textual tree view which can be
used to hide or show groups of nodes and edges in large graphs. Additional
views can be easily added since the core methods of G-API emit Qt signals
whenever a change is made. Another important feature that facilitates the
debugging of complex CORTEX configurations, is the possibility to draw
inside this graphical representations without perturbing the graph. An ex-
ample could be the drawing of landmarks, targets, bounding boxes or robot
paths used or produced by an agent.

All the code that managed the graph is compiled as a dynamic library and
linked to each agent. The user sees the graph G as a local data structure that
is accessed through its G-API.

5 Examples and experiments

SinceDSRd is still a prototype under heavy testing, optimization and debugging,
we will show here a series of examples of increasing complexity, each one with
a corresponding video. We still don’t have metrics that could give an idea of
the final performance of the tool, except for the throughput and latency figures
provided by eProsima on FastDDS, which are among the best of their class.
The synchronization layer using CRDTs adds some overload that will depend
on the impact of the merge operation on each node update. Also, it is difficult
to provide quantitative comparisons here since we don’t know of similar tools
designed with the same purpose.

The first example 9 shows the initiation procedure of a CORTEX instance
running against the CoppeliaSim robotics simulator. The example shows a two-
step process. First, CoppeliaSim is started using a non-agent RoboComp com-
ponent named ViriatoPyRep. This is Python program that imports PyRep [17]
to run CoppeliaSim in the same loop and loads a model of RoboLab’s adapted
apartment, ALab. As a component, it provides RoboComp interfaces for all ele-
ments of the robot and for all external virtual devices installed in the apartment.
In the second step, the agent idserver is started and it reads an initial graph
from a JSON file. This stored graph contains the same scene that was loaded
in CoppeliaSim but without the person. Once the agent has started, it opens a

8 http://www.openscenegraph.org/
9 Video: first-example available in the list https://www.youtube.com/playlist?list=PLDkfV8Ufc2i1p-

viGTV3QKupFD2ute535



10 Bustos et al.

Fig. 4. Composition for Example 1 showing in the first plane the simulated scene of
the ALab with the robot, a person and three additional cameras placed on the walls.
Each of the four background captures shows a different representation of the graph
made available to the user as part of the generated code. Top-left, is the standard
graph representation; top-right is the OSG 3D view automatically computed from the
graph; bottom-left is Qt 2D view also computed from the graph; and bottom-right is
a textual tree view.

window with the views described before. Figure 4 shows a composition of the
simulated scene and the views provided by the agent.

The second example 10 shows the deployment of a second agent, ViriatoDSR,
that acts as a bridge between the simulated robot and the graph. On startup, this
agent broadcasts, on a special topic, a request for a fresh copy of the graph. The
request is served by the agent idserver, already running. ViriatoDSR is connected
to ViriatoPyrep using RoboComp’s interfaces and the Ice middleware, and to
the graph using FastDDS. All low-level sensor data from the robot is injected
into the graph, including the robot’s RGBD camera streams. The use of reliable
multicast reduces the bandwidth to the net load of one transmission plus some
control information. The first running agent, idserver, receives the updates on
the attributes of the nodes corresponding to the camera, the LIDAR and the
position of the robot in the scene. The video shows how this data can be accessed
from the UI in real-time. It also shows nodes and edges flashing when they are
being updated by incoming data. See Figure 5

In the third example 11, a third agent is introduced that access the number
and pose of the avatars included in the scene. The agent used here is a simplified

10 Video: second-example available in the list https://www.youtube.com/playlist?list=PLDkfV8Ufc2i1p-
viGTV3QKupFD2ute535

11 Video: third-example available in the list https://www.youtube.com/playlist?list=PLDkfV8Ufc2i1p-
viGTV3QKupFD2ute535



Low-latency working memory 11

Fig. 5. Composition for Example 2 in text. A second agent has been started that acts
as a bridge between the Python adapter, ViriatoPyrep and the graph. All received
data is injected as it arrives and propagated to the other agent. The left part of the
figure shows the first agent’s UI, with the views for the LIDAR (an attribute of node
laser that hangs from node omnirobot) and the camera. The right part shows the same
data for the second agent. The central image corresponds to the scene being simulated.
The capture in the lower side of the image corresponds to an instantaneous measure of
the band-width measured with the Linux utility iftop. The 35Mb/s figure corresponds
to one RGB stream and shows that bandwidth remains constant with the number of
agents.

version of the real one that uses OpenPifPaf12 and other DNNs to detect com-
plete bodies, track them and estimate their orientation [18]. When this agent
detects a person, it inserts it in the graph creating a new node and connects it
to the world coordinate system using an RT edge. The avatar is shown in the
2D and 3D views and the new node is propagated to the other agent, where it
is also depicted. The edge’s rotation and translation attributes are hereinafter
updated whenever a change is read from the simulator. See Figure 6.

The last example 13 shows how a fourth agent is started. This new participant
takes the RGB image from the node camera’s in its updated copy of the graph
and processes it with the DNN YoloV3 14. The algorithm detects three objects in
the virtual scene that are created as new nodes in the graph and made available
to the other agents. See Figure 7.

12 https://github.com/vita-epfl/openpifpaf
13 Video: fourth-example available in the list https://www.youtube.com/playlist?list=PLDkfV8Ufc2i1p-

viGTV3QKupFD2ute535
14 https://pjreddie.com/darknet/yolo/



12 Bustos et al.

Fig. 6. Composition for Example 3 in text. The figure shows three agents running and
sharing the graph. When the third agent initiates, it injects the detected person into
the graph and the new nodes are propagated to the other agents. The three similar UIs
show the reconstructed scene from different points of view. On the right side, the flow
of images arriving to each agent is shown. Again, the total bandwidth in the multicast
address is kept constant.

Fig. 7. Composition for Example 4 in text. A fourth agent is added that integrates the
DNN YOLOv3 to detect object in the virtual scene, The left part of the composition
shows the UIs of two agents, one of them displaying the LIDAR data in its graph. The
right part shows the current scene in CoppeliaSim and the window in the center shows
the detected objects over the processed image.



Low-latency working memory 13

6 Conclusions and future work

The results presented in this work are a first step towards a fully operational
distributed DSRd. We have proposed a design based on a new combination of δ-
CRDTs and an high-performance pub/sub middleware. The initial experiments
have shown that several agents can share a non-trivial graph and edit its nodes
for long periods of time without compromising its integrity. At the end of the
trials, all copies have been checked to have the same contents. Also, the inspec-
tion of the traffic published by the middleware shows that only data belonging
to the modified nodes or edges are published and, still, eventual consistency is
achieved every time. Additionally, the window of consistency in these tests using
only one host is very short as expected. All these results are good indicators
of the potential that a distributed, low-latency, working-memory can have in
future RCAs, where software complexity will be a major problem for developers
and roboticists. As aforementioned, dealing with the software complexity that
comes with an increasing number of agents, is one of our more urgent priorities
and more tools will be needed to assist in debugging these large ensembles of
processes.

7 Acknowledgments

This work has been partially funded by the EU RobMoSys project (H20202-
732410), the project RTI2018-099522-B-C4X, funded by the Spanish Ministerio
de Ciencia, Innovación y Universidades and FEDER funds, the EU INTERREG-
POCTEC project 0043-EURAGE-4-E, and the Extremaduran Goverment projects
GR15120 and IP IB16090

References

1. Kotseruba, I., Gonzalez, O., Tsotsos, J.: A Review of 40 Years of Cognitive Ar-
chitecture Research: Focus on Perception, Attention, Learning and Applications.
Tech. rep. (2016). URL http://arxiv.org/abs/1610.08602

2. Romero-Garcés, A., Calderita, L.V., Mart́ınez, J., Bandera, J.P., Marfil, R., Manso,
L.J., Bandera, A., Bustos, P.: Testing a fully autonomous robotic salesman in real
scenarios. In: ICARSC, pp. 1–7 (2015)

3. Bustos, P., Manso, L., Bandera, J., Romero-Garcés, A., Calderita, L., Marfil, R.,
Bandera, A.: A unified internal representation of the outer world for social robotics.
In: ROBOT, vol. 2, pp. 733–744 (2015)

4. Calderita, L., Bustos, P., Mej́ıas, C.S., Fernández, F., Viciana, R., Bandera, A.:
Asistente Robótico Socialmente Interactivo para Terapias de Rehabilitación Motriz
con Pacientes de Pediatŕıa. Revista Iberoamericana de Automática e Informática
Industrial RIAI 12(1), 99–110 (2015). DOI 10.1016/j.riai.2014.09.007

5. Beer, R.: Dynamical approaches to cognitive science. Trends in cognitive sciences
4(3), 91–99 (2000)



14 Bustos et al.

6. Voilmy, D., Suarez, C., Romero-Garcés, A., Reuther, C., Pulido, J., Marfil, R.,
Manso, L., Lan, K., Iglesias, A., González, J., Garcia, J., Garcia-Olaya, A., Fuente-
taja, R., Fernández, F., Duenas, A., Calderita, L., Bustos, P., Barile, T., Bandera,
J., Bandera, A.: Clarc: A cognitive robot for helping geriatric doctors in real sce-
narios. In: ROBOT, vol. 1, pp. 403–414 (2017)

7. Pulido, J., González, J., Suarez-Mejias, C., Bandera, A., Bustos, P., Fernández,
F.: Evaluating the child-robot interaction of the naotherapist platform in pediatric
rehabilitation. International Journal of Social Robotics pp. 16– (2017)

8. Bandera, A., Bandera, J.P., Bustos, P., Férnandez, F., Garćıa-Olaya, A., Garćıa-
Polo, J., Garćıa-Varea, I., Manso, L.J., Marfil, R., Mart́ınez-Gómez, J., Núñez, P.,
Perez-Lorenzo, J.M., Reche-Lopez, P., Romero-González, C., Viciana-Abad, R.:
LifeBots I: Building the software infrastructure for supporting lifelong technologies.
In: Advances in Intelligent Systems and Computing, vol. 693, pp. 391–402 (2018).
DOI 10.1007/978-3-319-70833-1 32

9. Vega-Magro, A., Manso, L., Bustos, P., Núñez, P., Macharet, D.: Socially accept-
able robot navigation over groups of people. In: RO-MAN 2017 - 26th IEEE
International Symposium on Robot and Human Interactive Communication, vol.
2017-Janua (2017). DOI 10.1109/ROMAN.2017.8172454

10. Brewer, E.: CAP twelve years later: How the ”rules” have changed. Computer
45(2), 23–29 (2012). DOI 10.1109/mc.2012.37

11. Bailis, P., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Bolt-on causal consistency. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 761–772 (2013). DOI 10.1145/2463676.2465279

12. Terry, D.: Replicated data consistency explained through baseball. In: Communi-
cations of the ACM, vol. 56, pp. 82–89 (2013). DOI 10.1145/2500500

13. Baquero, C., Almeida, P.S., Shoker, A.: Pure Operation-Based Replicated Data
Types (609551), 1–30 (2017). URL http://arxiv.org/abs/1710.04469

14. Almeida, P.S., Shoker, A., Baquero, C.: Delta state replicated data types. Journal
of Parallel and Distributed Computing 111, 162–173 (2018). DOI 10.1016/j.jpdc.
2017.08.003

15. Enes, V., Almeida, P.S., Baquero, C., Leitao, J.: Efficient synchronization of state-
based CRDTs. Proceedings - International Conference on Data Engineering 2019-
April, 148–159 (2019). DOI 10.1109/ICDE.2019.00022

16. Manso, L., Bachiller, P., Bustos, P., Calderita, L.: RoboComp: a Tool-based
Robotics Framework. In: N. Ando, S. Balakirsky, T. Hemker, M. Reggiani,
O. von Stryk (eds.) Simulation, Modeling and Programming in Autonomous Robot-
sRobots, vol. 6472, chap. LNCS 6472, pp. 251–262. Springer, Darmstadt, Germany
(2010)

17. James, S., Freese, M., Davison, A.J.: Pyrep: Bringing v-rep to deep robot learning.
arXiv preprint arXiv:1906.11176 (2019)

18.


